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Abstract
Structural transitions in a single AB-copolymer chain where saturating bonds
can be formed between A- and B-units are studied by means of Monte Carlo
computer simulations using the bond fluctuation model. Three transitions are
found, coil–globule, coil–hairpin and globule–hairpin, depending on the nature
of a particular AB-sequence: statistical random sequence, diblock sequence
and ‘random–complementary’ sequence (one-half of such an AB-sequence is
random with Bernoulli statistics while the other half is complementary to the
first one). The properties of random–complementary sequences are closer to
those of diblock sequences than to the properties of random sequences. The
model (although quite rough) is expected to represent some basic features of
real RNA molecules, i.e. the formation of secondary structure of RNA due
to hydrogen bonding of corresponding bases and stacking interactions of the
base pairs in helixes. We introduce the notation of RNA-like copolymers and
discuss in what sense the sequences studied here can be considered as RNA-like
copolymers.

1. Introduction

To derive a better understanding of the physical principles behind the biological functioning of
biopolymers (e.g. proteins, DNA, RNA) is one of the major challenges for science in the early
part of the twenty-first century. It will allow an improved insight into the molecular principles
behind the evolution of biopolymers and their sequences. An interdisciplinary scientific field
is emerging; the study of simple models of these complex molecules is an important task.
Some examples of recent work are the theory and computer simulations of different models
for protein folding [1–12], conformation-dependent sequence design [13–18], the study of
toroidal structure of DNA [19–24] and the secondary structure of RNA [25, 26].
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Figure 1. Allowed direction of strands forming a stem.

In this paper, we will consider a single AB-copolymer chain where the formation of
saturating bonds (SBs) is allowed between A and B monomer units. The analysis of
conformations of such a chain will be performed by means of Monte Carlo (MC) computer
simulation. Three different kinds of primary AB-sequences are investigated: statistically
random sequence, diblock sequence and ‘random–complementary’sequence (one-half of such
an AB-sequence is random with Bernoulli statistics while the other half is complementary to
the first one). Each monomer unit of type A or B possesses one valency to form an SB with
some monomer unit of opposite type. An important goal for our study is to understand how the
SB formation influences the state diagram of possible spatial conformations of the copolymer
chain. We are interested in finding the regions of stability of different conformations and
in the location of transition lines between them. Subsequently, it will be possible to modify
the primary sequence in the course of a simulation in order to study the effects of sequence
evolution on the number of available conformations.

We keep in mind the formation of the secondary structure of real RNA molecules which is
organized in the form of a ‘clover leaf’ as an example of the real features of biopolymers which
serve as a guide for us in constructing our model. The present study lies within the framework
of the recently proposed scheme of conformation-dependent sequence design [13–18].

The paper is organized as follows. In section 2 we describe our model and discuss the
importance of each of the assumptions made. In section 3 we present and discuss our results.
Finally, section 4 contains conclusions and the outlook for further investigations.

2. Method: model and simulation technique

We use the bond fluctuation model in our MC simulation [27–29]. The molecule is a single N-
unit chain with NA monomer units of type A and NB monomer units of type B (N = NA + NB).
Each monomer unit occupies eight neighbouring lattice sites on a simple cubic lattice and the
excluded volume condition is applied. The bond length between two successive monomer
units along the chain can fluctuate between 2 and

√
10 lattice units.

The chain conformation is characterized by the interaction energy, E , between monomer
units, which is defined in the following way. If a monomer unit of type A is in contact with a
monomer unit of type B they can form a thermoreversible SB provided they are not successive
along the chain. After one SB between two monomer units has been formed these units can no
longer be involved in the formation of any other SB. Every SB adds εSB < 0 to the energy E of
the system. Two (or more) SBs (pairs) formed between successive monomer units respectively
along the chain are called a stem of SBs (i.e. the second pair should contain monomer units
which are neighbours along the chain for the units of the first pair, see figure 1). Every border
of the stem adds the positive value −εSBαcoop to the energy of the system, where we will
call the parameter αcoop the factor of cooperativity. Introducing such a potential means that
the borders are energetically unfavourable (see table 1 for an example of the SB-potential
used).
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Table 1. Dependence of energy on cooperativity parameter αcoop .
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Another possibility to account for this effect would be to introduce the energy gain for
every stacking pair of SBs, i.e. the negative stacking energy. We do not consider this possibility
here and do not discuss the equivalence of both approaches, although such a modification of
the model is even more directly connected with the real physical processes of helix formation
in biopolymers.

In our model it is specified that stems can be formed only in ‘antiparallel mode’, i.e. two
strands forming a stem are always oppositely directed (see figure 1). That feature mimics some
properties of real RNA molecules which are known to be directed polymers and to have the
so-called ‘head–tail’ primary structure. Such a structure ensures the formation of helixes in
real RNAs by only antiparallel strands. In our model the cooperativity bonus is only applied
for antiparallel strands and not for parallel ones. Hence, the direction of strands which are
forming stems does not play any role in the case αcoop = 0.

In our simulation we used the following single MC steps:

(1) we choose a monomer unit randomly;
(2) we move that unit randomly to one of the six neighbouring lattice sites (this trial move

is rejected if it breaks the excluded volume condition, i.e. if the monomer unit hits some
already occupied lattice sites);

(3) if this monomer unit is involved in the formation of an SB we destroy this bond temporarily;
(4) we prepare the list of all neighbours in space for this monomer unit in its new trial position,

and set the maximal length of this list to Nmax = 19;
(5) we choose an integer random number from the interval [0; 19] and try to form an SB

with corresponding neighbours from the list (if this random number is zero then no SB
is formed; if this random number is larger than the actual number of real neighbours we
reject this trial move; if the chosen neighbour is already involved in some other SB we
also reject the trial move).

We accept this trial move according to the usual Metropolis scheme: the acceptance probability
is proportional to exp(−dE/T ), where dE is the energy difference between the trial and the
old states.

The above algorithm satisfies the condition of microscopic reversibility but at the same
time it shifts our system to a slightly more compact conformation (see the appendix). To
be able to achieve equilibrium and to study properties of the system in a broad interval of
temperatures we used the multicanonical ensemble technique [30–33]. The main idea of this
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method is to produce a random walk over the states with different energies. This is performed
by calculating additional weights for each energy value using the energy histogram obtained
during the previous iteration of simulations. Then we run biased MC simulations with those
weights and perform reverse reweighting of the simulation data obtained.

The following two remarks are made here concerning the averaging over different primary
sequences and the definition of states and transitions between them.

In principle, the averaging of simulation data over the different primary sequences can
(and in some cases definitely should) be performed. However, we did not perform such an
averaging systematically here, although we have looked at several particular realizations of
randomness. This was done for the following reasons. First, the main aim of the approach we
are following is to search for some sequence design procedure which would produce sequences
with non-trivial properties (or even probably quite unique ones). We try first to suggest such
procedures theoretically and check them in computer simulations, and afterwards think about
the possibility of implementing our ideas in the chemical laboratory. Within the framework
of this approach one can in principle expect to find that the properties of some particular
realization of a sequence are quite different from those averaged over many sequences. This
is not expected, of course, for the random (Bernoulli) sequences. Nevertheless, the use of a
uniform procedure of comparison of data for just a few particular realizations does have clear
justification in our case, because it gives us also an idea about the magnitude of differences
between them. This will enable us to locate crucial differences between particular sequences
if they appear. Our approach is also supported by some previous experience when important
information was obtained from the analysis of differences between the curves for particular
primary sequences of designed AB-copolymers [34]. Our second important point is connected
with the problem of good averaging over spatial conformations for each particular primary
sequence at different temperatures, especially at low ones, taking into account the possibility
of formation of different non-trivial spatial intramolecular structures which can depend on
the primary sequence. To this end we have used the multicanonical sampling technique
which allows good equilibration of chain conformations at different temperatures. Using
this technique it is even possible to evaluate the degeneracy of the ground state for a particular
sequence [35]. However, this method is time consuming (even for rather short chains consisting
of N = 50 monomer units which are considered here), which makes it difficult to average over
many realizations of randomness.

Our second remark concerns the terminology we are using here and what we understand
as ‘states’, ‘transitions’ between those states and the ‘order’ of these transitions. The main
points are well known [36, 37]:

(1) there are no phases and phase transitions in a system of finite size;
(2) different spatial structures of a particular polymer chain of finite length can be classified as

belonging to some states, i.e. a coil state or globular state, while different intramolecular
structures can be found inside dense globules and which can in turn be classified using an
appropriate order parameter;

(3) the question of whether the conformational transition between two particular states
is the true phase transition can be answered if one extrapolates the behaviour of the
system to the thermodynamic limit N → ∞ (the width of the true phase transition
goes to zero, �T → 0); we did not perform such an analysis here and emphasize
that we speak always about conformational transitions between different intramolec-
ular spatial structures in our particular system of a single chain of finite length (we
have to choose an appropriate order parameter to characterize each particular transition);
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(4) we consider those transitions to be of ‘first-order type’ (first-order-like transitions) if they
show the formation of the double-peak structure on the histogram of the energy or order
parameter, while the shift of a single peak is typical of ‘second-order-like’ transitions.

The coil–globule transition in polymer chains induced by SBs was studied theoretically
some time ago [38, 39]. In the limit of infinitely long chains the phase diagram of temperature
versus density of functional units which are able to form SBs, as well as the order of phase
transitions between the coil, globule and hairpin,have been investigated. However, we consider
in this paper only the case of a rather short AB-copolymer chain, and, moreover, we consider
selective interactions only between A- and B-units which can form SBs. Therefore our system
cannot be directly compared to the theoretical results either for copolymers with volume
interaction or for polymers with SBs. Our main attention concerns the comparison of structural
transitions for strongly different primary sequences.

3. Results: coil–globule versus coil–hairpin transition

When the temperature is decreased the chain collapses. To characterize the collapse transition
we used the following values: energy E , energy fluctuations, gyration radius Rg , the number
of SBs formed NSB . Additionally, we have measured some variables characterizing the formed
stems:

(1) the number of individual bonds Ni which do not have any neighbouring SBs;
(2) the number of borders Nb , i.e. the number of SBs which have only one neighbouring SB

which belongs to the same stem;
(3) the number of stacked bonds Ns , i.e. the number of SBs having two neighbouring SBs

(on the left and on the right) which belong to the same stem (this is the total number of
‘internal’ SBs involved in the formation of different stems).

The total number of all SBs is the sum of these three values: NSB = Ni + Ns + Nb . For three
triplets, for example, we have NSB = 9, Ni = 0, Ns = 3, Nb = 6.

We studied first the case of the statistically random AB-copolymer (with Bernoulli
statistics). In figures 2(a) and (b) we present the temperature dependence of the mean squared
gyration radius and of the full energy of a chain. The full chain length is equal to N = 50 and
we take equal amounts of A- and B-units: NA = NB = 25. The energy parameter was taken
as εSB = −10 (in kT units) for all different cases considered in this paper. The simulations
were performed for three different values of cooperativity parameter αcoop = 0.0, 0.5 and
1.0. We have presented here the simulation data for only one particular primary sequence;
however, we have checked a few other random sequences and found the curves to be similar
(see figure 4(b) and discussion below). There are some differences at low temperature which
correspond to different ground states but in the transition region the behaviour is quite similar.
The system with no cooperativity shows a rather smooth coil–globule transition on decrease of
the temperature (circles in figures 2(a) and (b)). The globule is not spherical and its density is
much smaller than unity (using only SBs it is impossible to get a dense state). The total number
of SBs goes up from 2 to 25 (the highest possible number of SBs in AB-copolymer consisting of
50 monomer units). For cooperativity equal to 0.5 and 1.0 the transition temperature becomes
smaller (it drops down from the value Ttrans ≈ 4.5 for αcoop = 0 to Ttrans ≈ 2.5 and 2.7
for αcoop = 0.5 and 1.0 respectively), and the transition itself is sharper. The globular state
has larger energy because of positive terms coming from the stem borders. For αcoop = 1.0
there is even a pretransitional swelling with decreasing temperature which can be understood
by taking into account the following argument. At high temperature a few individual bonds
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Figure 2. Mean squared gyration radius (a) and mean energy (b) versus temperature for random
AB-copolymer for different values of cooperativity parameter αcoop .

are always present and cause compactification in comparison to the pure coil state. With
decreasing temperatures some of these bonds become unfavourable. The fact that the mean
energy is positive for αcoop = 1.0 is a result of the definitions in table 1. We have also produced
histograms of the full energy, and found a simple shift of the single peak in the transition region
(no bimodality). At low temperatures there are indications of some conformational transitions
(with double-peak histograms) between structures which are quite close to each other in energy
(this point requires further investigation).

We have also investigated some specially designed sequences and diblock sequence. The
following primary structures were investigated:

(1) random–complementary sequence: this sequence has a statistical 1:1 distribution of A-
and B-units in the first half of the chain (Bernoulli statistics) while the second part of
the sequence is complementary to the first one (again we have compared the simulation
data for several different realizations of random–complementary sequences and found the
curves for the temperature dependencies of gyration radius, energy and the number of SBs
to be quite close to each other, see figure 4(b) and the discussion below);
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Figure 3. Gyration radius versus temperature for random, diblock and random–complementary
sequences for cooperativity parameter αcoop = 0.0 (a), αcoop = 0.5 (b), αcoop = 1.0 (c).
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(2) AB-diblock (AB-sequence, which has its first half of the chain consisting of A-units and
the other half of B-units).

In figure 3 we present the temperature dependence of the mean squared gyration radius for
random, random–complementary and diblock sequences for three values of cooperativity
parameter αcoop = 0.0 (a), 0.5 (b) and 1.0 (c). Figure 4 depicts SB statistics for the secondary
structure of the collapsed state of AB-copolymer chains for a cooperativity value equal to 0.5
(figure 4(a)) and 1.0 (figure 4(c)), i.e. the temperature dependence of the number of borders
Nb is presented. We have also calculated and analysed the mean energy of the chain and the
temperature dependences of the number of individual bonds Ni and the number of stacked
bonds Ns for different sequence types (figures are not presented here). In figure 4(b) we
show the data for Nb obtained at αcoop = 0.5 for two particular random sequences and two
random–complementarysequences. The number of borders Nb is the variable most susceptible
to the particular sequence. These data show that our error bar due to a particular realization
of randomness is quite small in the transition region. The ground state (hairpin) is quite
unique for the random–complementary sequence while for random copolymers the globules
with significant differences in internal structure can be formed at low temperatures.

The analysis of all these data (figures 3 and 4) leads to the following conclusions. Without
cooperativity (αcoop = 0) the properties of random and random–complementary sequences
are very close to each other and show remarkable differences from the diblock sequence.
The gyration radius for the diblock sequence is smaller than that for random and random–
complementary sequences even in the coil state (at high temperatures). The fact that in our
model in the coil state the gyration radius of the chain with SB is smaller than that of the chain
with only excluded volume interactions is explained in the appendix. At the same time we
have found the number of individual SBs to be smaller for the diblock sequence, while the
energy is larger (less negative) for this sequence as well (see table 1). This is an apparent
contradiction, because the SBs in the diblock sequence can be formed only between monomer
units which are more separated from each other along the sequence than in the case of random
or random–complementary sequences, and this leads to stronger compactification of the coil
state for diblock copolymers.

Upon increasing the cooperativity parameter (let us first discuss the case αcoop = 0.5)
the formation of hairpins is enforced for those chains with primary sequences ‘designed’
to have a hairpin as the ground state (i.e. diblock and random–complementary sequences).
This is not true for random sequences, where the SBs in the compact conformations are
mainly the individual ones, i.e. there are many borders, and therefore the energy levels in the
low-temperature region are higher. According to the gyration radius data the low-energy
conformations for random sequences are closer to the globular ones, but most probably
these final conformations are very sequence specific. ‘Hairpin-designed’ sequences reveal
an interesting behaviour, especially chains with the diblock sequence. There are two
conformational transitions close to each other, coil–globule and then globule–hairpin: with
decreasing temperature the gyration radius decreases and then increases, reaching the value
for the hairpin (figure 3(b)). The number of borders (figure 4(a)) initially increases with
decreasing temperature, but after achieving a maximum it falls and finally reaches the value
2 on average (hairpin). Such a tendency also takes place for lower values of αcoop, even in a
more pronounced way (see figure 7(a) below). Random sequences have almost no possibility
of decreasing the number of borders, so they persist in the globular state.

The system with a high degree of cooperativity (αcoop = 1.0) demonstrates a sharp coil–
hairpin transition for designed sequences, the effect of an intermediate coil–globule transition
being almost absent (figure 3(c)). In all ‘designed’ sequences after the collapse we have only
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Figure 4. Temperature dependence of the number of borders for different sequences, αcoop = 0.5
(a) and 1.0 (c). The data for two particular random and two particular random–complementary
sequences are shown ((b); αcoop = 0.5).
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cooperativity

coil

 globule hairpin

T

Figure 5. Preliminary diagram of states for variables temperature and cooperativity. The globule–
hairpin transition (dashed curve) is present only for diblock and random–complementary sequences
but not for the random one. For the random–complementary sequence the globule–hairpin transition
line is shifted to lower values of cooperativity (see discussion in the text).

one stem (number of borders equal to 2); in the random sequence case this state is not possible,
so we have a kind of globular state with several stems. For some particular sequences one
can even distinguish a series of structural transitions between globular states with a different
number of stems if this number is considered as an order parameter (see e.g. figure 4(c)).
During simulations we had some difficulties with equilibration for this case.

As far as the temperature and sharpness of transitions are concerned, when there is
no cooperativity all systems exhibit very smooth coil–globule transitions. There is quite a
broad and low peak in energy fluctuations and the transition is of second-order type. When
αcoop = 0.5 we observe decreasing transition temperature and increasing sharpness. At the
same time we observe significant differences for different sequences. For the random sequence
the decrease of the transition temperature is quite large and the sharpness is the lowest one. The
random–complementary sequence reveals a less pronounced decrease of transition temperature
and the largest sharpness. The transition for the diblock sequence starts at higher temperature
but has lower sharpness, so this sequence forms an ideal hairpin at a temperature which is even
lower than that for the random–complementary sequence. Similar behaviour is typical for
αcoop = 1.0, but the transition temperature is slightly higher than in the case of cooperativity
0.5.

In figure 5 we have summarized our results in the form of a schematic diagram of states
for variables temperature and cooperativity for a single macromolecule of AB-copolymer with
saturating AB-bonds. The transition lines between the coil, globule and hairpin states should
be considered more as a guide for the eye because they are based on very few simulation data
points and on a general physical sense. The coil, globule and hairpin states are all present
for the diblock and random–complementary sequences but the hairpin state is absent for the
random sequence. Our data suggest that for the random–complementary sequence the region
of the hairpin state is larger, i.e. the globule–hairpin transition line is shifted to the left, in
comparison to the diblock sequence. Such a preliminary conclusion is supported by the fact
that at αcoop = 0.5 we observe for the diblock sequence a transition from the coil to hairpin
state via the intermediate globular state, but this intermediated globule is not observed for the
random–complementary sequence.

We have examined the energy histograms for several temperatures near the transition
point. The histograms for αcoop = 0.0 show a simple shift of a single peak in the course of
the coil–globule transition in the AB-copolymer chain of finite length with selective formation
of SBs (only between A- and B-units). Therefore, this transition is of second-order type.
However, some interesting features can be observed for random–complementary and diblock



Monte Carlo simulation of AB-copolymers with saturating bonds 3023

-250 -200 -150 -100 -50 0

0,00

0,04

0,08

0,12

0,16

0,20

0,24

a)

T=3.1
T=3.3
T=3.3
T=3.4

Energy
-250 -200 -150 -100 -50 0 50 100

0,00

0,04

0,08

0,12

0,16

0,20

0,24

0,28

0,32

0,36

b)

T=3.5
T=3.6
T=3.7
T=3.8

Energy

-250 -200 -150 -100 -50 0
-0,02

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

c)
T=3.0
T=3.2
T=3.4
T=3.6
T=3.8
T=4.0

Energy

-250 -200 -150 -100 -50 0 50

0,00

0,04

0,08

0,12

0,16

0,20

0,24

0,28

d)

T=3.1
T=3.2
T=3.3
T=3.4

Energy

Figure 6. Energy histograms measured at different temperatures for the random–complementary
sequence for αcoop = 0.5 (a) and αcoop = 1.0 (b) and for the diblock sequence for αcoop = 0.5 (c)
and αcoop = 1.0 (d).

sequences for αcoop = 0.5 and 1.0 (figure 6). First, the random–complementary sequence
shows a first-order-like transition between the coil and hairpin states for both αcoop = 0.5 and
1.0 (one can see the bimodality and the decrease of the high-energy peak and a simultaneous
increase of the low-energy peak with decreasing temperature). The diblock sequence shows a
second-order-like transition between the coil and globule states for αcoop = 0.5 at temperature
T ≈ 3.6 (broad single peak),although there is quite a clear hint for the first-order-like transition
between the globule and hairpin states at lower temperature T ≈ 3.2. At high cooperativity
αcoop = 1.0 the diblock sequence shows a first-order-like transition between the coil and hairpin
states, while there is always some fraction of intermediate middle-energy conformations. For
the statistically random sequence (histograms are not shown here) at αcoop = 0.5 we have a
smooth second-order-like coil–globule transition, but then there are indications of a first-order-
like transition at even lower temperatures. We explain this phenomenon by assuming some
internal readjustments in the globule. An appropriate order parameter can probably be found
to describe the transitions between those structures (we have not investigated this problem).
Similar indications of several first-order-like transitions were observed for αcoop = 1.0. We
should emphasize here that there are strong finite size effects in our system, and in the
thermodynamic limit of large chain length the overall picture of different transitions can change
significantly.
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Figure 7. The number of borders for diblock and random–complementary sequences versus
temperature at small values of cooperativity parameter (a) and examples of intermediate states
for diblock (b) and random–complementary (c) sequences.

What happens with our system at small αcoop values? Analysis of the situation near
the point where the qualitative behaviour of the system changes (i.e. the coil–hairpin instead
of coil–globule transition occurs) may help us to understand differences between diblock
and random–complementary sequences. In figure 7(a) our computer simulation data for the
temperature dependence of the number of borders for diblock and random–complementary
sequences are presented for small values of cooperativity parameter αcoop = 0.1 and 0.2.
One can see that even a rather small value of cooperativity (αcoop = 0.1) forces the chain
with a ‘designed’ sequence to form hairpin-like structures. The well-pronounced coil–globule
and then globule–hairpin transitions are observed. The final structure is not a single hairpin
but a set of several rather long stems: four stems on average for the diblock sequence (eight
borders) and two stems (four borders) for the random–complementary sequence. The same
tendency takes place at higher values of cooperativity (αcoop = 0.2): the number of stems in
the diblock chain (three stems for this particular case) is always higher than in the random–
complementary case (two stems). Moreover, for the random–complementary sequence the
globular region is narrower and transitions are sharper than in the diblock case. A possible
explanation of these differences is the lack of intermediate states in the case of the random–
complementary sequence. Indeed, the diblock chain allows some ‘impurities’ in the secondary
structure (because such conformations are not too unfavourable) while the pure hairpin (one
stem) for the random–complementary sequence is energetically much more favourable than any
imperfections in the structure (see figures 7(b) and (c) where an example of spatial conformation
quite close to a perfect hairpin is shown which is completely unfavourable energetically for the
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random–complementary sequence). These features can be roughly described by the statement
that random–complementary sequences are ‘better designed’ for the formation of hairpin
structure than diblock sequences.

4. Conclusions and outlook

We have presented a new simple model of AB-copolymer chains with the possibility of forming
SBs between monomer units of different types,which can be considered as a study of the design
of sequences for obtaining simple secondary structures in AB-copolymers.

One important remark should be made here. We consider SBs as a ‘first approximation’
model for hydrogen bonds, which we keep in mind as our prototype. The properties of real
hydrogen bonds are of course much more sophisticated [40]. One of the main features of
a hydrogen bond is its dependency on orientation, i.e. such a bond can be formed only if
two corresponding functional monomer units are properly oriented relative to each other. This
feature is not taken into account in our model. However, our model reflects two other important
features of hydrogen bonding in biopolymers, especially in RNA: first that each monomer unit
can form only one hydrogen bond; and second that there is an energy gain from the stacking
of base pairs in a helix. We start with such a simplified model and claim that it can be used to
mimic some important properties of real RNA molecules.

We have found non-trivial features even for this rather simple model. That is, the
conformation at low temperatures is changed from the usual globule to a hairpin for some
specially designed sequences on increasing the cooperativity parameter. The design of
secondary structures consisting of several stems of stacked SBs is our next aim. In general,
we can consider a model for sequences with random–complementary sections as a relative
successful simple model of RNA-like copolymers.
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Appendix. Proof of the microscopic reversibility condition

The condition of microscopic reversibility can be written in the form

p12 · e−E1/kT = p21 · e−E2/kT (A.1)

where p12 is the probability of transition from state 1 (with energy E1) to state 2 (with energy
E2), and p21 is the probability of the backward transition. The transition probability can be
represented as

p12 = α12 · p̃12 (A.2)

where α12 is the probability of choosing state 2 when the system is in state 1 and p̃12 is the
probability of accepting the transition from state 1 to state 2. In our model we use the standard
Metropolis criteria for p̃12:

p̃12 = e−�E/kT (A.3)

where �E = E2 − E1.
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The matrix α12 should be symmetric in order to achieve correct distributions for all
measured values in a canonical ensemble. Probability α12 consists of two parts:

α12 = α
(1)

12 α
(2)

12 (A.4)

where α(1) is the probability of choosing a particular space position for a monomer unit in the
course of a trial movement from state 1 to state 2, and α(2) is the probability of choosing a
particular neighbour for this unit with which it can form an SB when in state 2. Probability
matrix α(1) is symmetric, because we perform trial moves in random directions with a fixed
step in space. Therefore, the matrix α(2) should be symmetric as well. It is most natural to
choose α(2) = 1/(Nmax + 1), where Nmax is the maximal number of possible candidates for SB
formation and the case of absence of SB is taken into account. For the bond fluctuation model
the number of neighbours in a maximally dense state is equal to 25 (without neighbours along
the chain), but during simulations of systems with saturating interactions we never observed a
value higher than Nmax = 19, so we have chosen α(2) = 1/20.

The problem, which follows from this model, is the long lifetime of a particular SB and, as
a consequence, the very long relaxation time of the system. At high temperature (T = 1000)

the mean lifetime of one SB is about 100 MC steps and whole system relaxation time is close
to 105 MC steps. As can be easily understood from the model, we have effectively a very small
coefficient of trial move acceptance, no higher than 1/20 (in most cases there are almost no
suitable neighbours). This leads to some effective attraction between monomer units at high
temperatures. The gyration radius in our system is considerably smaller than in the system
without SB, in particular at high temperatures. If a monomer unit is involved in the formation
of an SB and is surrounded by several neighbours suitable for the formation of another SB, the
transition rate to the state without SB will be lower than that to the state with SB (the ratio of
these transition rates is proportional to the number of possible SB-neighbours). The existence
of several SBs leads to a smaller gyration radius, as in a polymer chain with several stickers.
Moreover, this gyration radius will depend on the primary sequence of the copolymer. For the
diblock copolymer these stickers are possible only between units which lie far apart from each
other along the chain, but for the random sequence the SBs will occur most probably between
monomer units which are quite close neighbours along the chain, and this will not lead to a
significant decrease of gyration radius.

References

[1] Bryngelson I D and Wolynes P G 1987 Proc. Natl Acad. Sci. USA 84 7524
[2] Yue K and Dill K A 1992 Proc. Natl Acad. Sci. USA 89 4163
[3] Shakhnovich E I and Gutin A M 1993 Proc. Natl Acad. Sci. USA 90 7195
[4] Shakhnovich E I 1994 Phys. Rev. Lett. 72 3907
[5] Klimov D and Thirumalai D 1996 Phys. Rev. Lett. 76 4070
[6] Deutsch J M and Kurosky T 1996 Phys. Rev. Lett. 76 323
[7] Li H, Helling R, Tang C and Wingreen N 1996 Science 273 666
[8] Shakhnovich E I 1997 Curr. Opin. Struct. Biol. 7 29
[9] Dima R I, Banavar J R, Cieplak M and Maritan A 1999 Proc. Natl Acad. Sci. USA 96 4904

[10] Bohr J 2001 Int. J. Quantum Chem. 84 249
Bohr J 2002 J. Macromol. Sci. B 41 787

[11] Pande V S, Grosberg A Yu and Tanaka T 1997 Biophys. J. 73 3192
Pande V S, Grosberg A Yu and Tanaka T 1995 J. Chem. Phys. 103 1

[12] Pande V S, Grosberg A Yu and Tanaka T 2000 Rev. Mod. Phys. 72 259
[13] Khokhlov A R and Khalatur P G 1998 Physica A 249 253
[14] Khokhlov A R and Khalatur P G 1999 Phys. Rev. Lett. 82 3456
[15] Zheligovskaya E A, Khalatur P G and Khokhlov A R 1999 Phys. Rev. E 59 3071



Monte Carlo simulation of AB-copolymers with saturating bonds 3027

[16] Ivanov V A, Chertovich V A, Lazutin A A, Shusharina N P, Khalatur P G and Khokhlov A R 1999 Macromol.
Symp. 146 259

[17] Chertovich A V, Ivanov V A, Lazutin A A and Khokhlov A R 2000 Macromol. Symp. 160 41
[18] Govorun E N, Ivanov V A, Khokhlov A R, Khalatur P G, Borovinsky A L and Grosberg A Yu 2001

Phys. Rev. E 64 040903
[19] Grosberg A Yu and Zhestkov A V 1986 J. Biomol. Struct. Dyn. 3 859
[20] Ubbink J and Odijk T 1995 Biophys. J. 68 54

Odijk T 1996 J. Chem. Phys. 105 1270
[21] Vasilevskaya V V, Khokhlov A R, Kidoaki S and Yoshikawa K 1997 Biopolymers 41 51
[22] Kuznetsov Yu A, Timoshenko E G and Dawson K A 1996 J. Chem. Phys. 104 336

Kuznetsov Yu A, Timoshenko E G and Dawson K A 1996 J. Chem. Phys. 104 105
Kuznetsov Yu A, Timoshenko E G and Dawson K A 1996 J. Chem. Phys. 104 7116
Kuznetsov Yu A and Timoshenko E G 1999 J. Chem. Phys. 111 3744

[23] Nogichi H, Saito S, Kidoaki S and Yoshikawa K 1996 Chem. Phys. Lett. 261 527
Nogichi H and Yoshikawa K 1998 J. Chem. Phys. 109 5070

[24] Ivanov V A, Paul W and Binder K 1998 J. Chem. Phys. 109 5659
Ivanov V A, Stukan M R, Vasilevskaya V V, Paul W and Binder K 2000 Macromol. Theory Simul. 9 488

[25] Higgs P G 2000 Quart. Rev. Biophys. 33 199
[26] Gesteland R F and Atkins J F (ed) 1993 RNA World (New York: Cold Spring Harbor Laboratory Press)
[27] Carmesin I and Kremer K 1988 Macromolecules 21 2819
[28] Paul W, Binder K, Heermann D W and Kremer K 1991 J. Chem. Phys. 95 7726
[29] Binder K (ed) 1995 Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford: Oxford

University Press)
[30] Lyubartsev A P, Martsinovskii A A, Shevkunov S V and Vorontsov-Velyaminov P N 1992 J. Chem. Phys. 96

1776
[31] Berg B A and Neuhaus T 1992 Phys. Rev. Lett. 68 9
[32] Escobedo F A and Pablo de J J 1996 J. Chem. Phys. 105 4391
[33] Hansmann U H E and Okamoto Y 1997 J. Comput. Chem. 18 920
[34] van den Oever J M P, Leermakers F A M, Fleer G J, Ivanov V A, Shusharina N P, Khokhlov A R and

Khalatur P G 2002 Phys. Rev. E 65 041708
[35] Chertovich A V, Ivanov V A, Khokhlov A R and Bohr 2003 in preparation
[36] Landau L D and Lifshitz E M 1980 Statistical Physics, Course of Theoretical Physics vol 5 (Oxford: Pergamon)
[37] Grosberg A Yu and Khokhlov A R 1994 Statistical Physics of Macromolecules (New York: American Institute

of Physics)
[38] Lifshitz I M, Grosberg A Yu and Khokhlov A R 1976 Sov. Phys.–JETP 44 855
[39] Tanaka F and Ushiki H 1986 J. Chem. Phys. 84 5925
[40] Jeffrey G A 1997 An Introduction to Hydrogen Bonding (Oxford: Oxford University Press)


